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Newhouse sinks in the self-similar bifurcation structure
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(Received 14 January 2000

The numerical analyses of the dynamics of periodically driven Toda oscillator suggest the following fea-
tures. Primary Newhouse orbitsinks and saddlg¢sre born in sequence when the oscillator proceeds through
various subharmonic resonance regions. As the control parameter is swept in the neighboring parameter space
of the homoclinic tangency for a primary saddle, first order secondary Newhouse sinks are born around the
corresponding primary sink in a series of periedupling (n>2) processes. Higher order secondary New-
house sinks are similarly born, in a recurrent manner, around those first-order secondary sinks, constituting a
self-similar bifurcation structure in the parameter space. Each highgnth) order secondary Newhouse sink
appears and undergoes sequence of period douliieigre being destroyed by crigesvithin a small sub-
interval of the control parameter window where the—1)th-order secondary Newhouse sink exists. The
nth-order secondary Newhouse orbits appear in the basin ofrthelJth-order secondary Newhouse sink.
Thus, the higher-order secondary sinks appear with progressively smaller basins intertwined with the basins of
lower-order secondary sinks.

PACS numbes): 05.45.Pq, 05.45.Ac, 42.65.Sf, 47.532.

A periodically driven nonlinear oscillator exhibits various tions of Newhouse have motivated many groups of research-
subharmonid¢harmonig resonances if the driving frequency ers[26—3Q for thorough investigations, and probably have
is multiples of(equal t9 the natural frequency of the oscil- remained an open subject until today. Laura Tedeschini-Lalli
lator. Each periodi resonance ri=1) gives birth of a and Yorke[26] have shown that, for an apparently typical
periodn saddle node bifurcation. If one changes the value okituation, Newhouse sinks may occur for a set of parameter
some suitable system parametécontrol parameter’), a  values of Lebesgue measure zero. kail. [27] have ob-
cascade of such resonances may occur, leading to an inerved that nonhyperbolic chaotic saddles are common in
nitely large sequence of saddle node bifurcatibiibe asso- chaotic systems. In the case of iée map, Karet al. [28]
ciated nodes later undergo sequence of period doubling, cofave shown evidence of persistent homoclinic tangencies,
stituting various branches. Some of these branches may eveid Grebogiet al. [29] have shown that the boundary of a
coexist in some intervals on the control parameter axis, leadsasin(born in saddle node bifurcatipeould become fractal
ing to multistability. Multistability has been observed in a gfier first homoclinic tangency of the corresponding bound-
variety of nonlinear systems, for instance, in electronic cir—ary saddle. From the analyses of laser rate equations and
cuits[3,4], lasers[5-9], geophysical modelgL0], mechani- Henon map, Eschenaet al.[30] have shown that the basins

cal systemg11], and also in some standard models such as, : . . :
, ) . re systematically organized in phase space, determined by
Henon map(12] and Duffing oscillatof13-15. The number the ordering of the heteroclinic and homoclinic intersections

of coexisting states increases if the dissipativity reduces.

This has been experimentally observed by Mewtal.[16] ﬁf the Ilnvatna;n; mt? nn;otlr?s bc')ftr:h?‘ bouncéary ;addr:es. Thgyk
in CO, laser, and numerically shown in Refd.7—-2Q from ave aiso stated about Ine birth of secondary INeWhQOUSe SInks

the laser rate equatiofi,7,8,21—23 a well known class-B around the primar)_/ Newhouse sinks. However, th_ey havg not
laser model. Feudadt al. [24] have theoretically shown the explored the possub_le recurrent appearance of similar higher
coexistence of around a hundred periodic sinks at small dif2rder secondary sinks around these secondary Newhouse
sipativity in the case of a two-dimensional map representinginks. We believe it would be worthwhile to study these
a periodically kicked mechanical rotor. A natural questiondirections. If one takes an integrated approach to analyze the
that arises is about the limit of the complex nature of multi-Pirth of periodic orbits in a periodically forced system, such
stability, and about some possible order behind such con® scenario appears feasible. For instance, let us consider a
plexity. Newhouse[25] has predicted about an infinitely case when various primary Newhouse orbits are born around
large sequence of coexisting sinks in the neigboring paranthe stable period-1, as the system enters through the series of
eter space of homaoclinic tangency. These celebrated predigarious subharmonic resonances. Next, a series of secondary
Newhouse sinks are born around these primary Newhouse
sinks, as Eschenaet al. have observed. In such a case, one
*Email address: bgoswami@apsara.barc.ernet.in may expect a similar trend to continue, giving birth to a set
Gavrilov and Shilniko1,2] have predicted the birth of an infi- of simultaneously coexisting higher-order secondary New-
nitely large sequence of saddle node bifurcations, in the case diouse sinks; the number of such sinks depending on the pa-
diffeomorphisms, close to homoclinic tangency of the invariantrameter values. We have recenili;7,19,2Q demonstrated
manifolds of a “boundary saddlei.e., a saddle, born in saddle some similar phenomena from the numerical analyses of the
node bifurcation Toda oscillator form[18,31,323 of the laser rate equations.
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FIG. 1. (Color) Homoclinic tangency of the period-3 manifolds=2.5 andm=0.00474. Two components of the unstable manifold are

shown respectively by blue and red points. Two components of the stable manifold are shown respectively by maroon and magenta points.

The plot (b), a closeup of plot(a), shows more clearly the stretching and folding of the maroon stable component and its eventual

accumulation near the magenta stable component. The blue unstable component also undergoes similar stretching and folding while

approaching the period-3 sirjlt the center of plofc) where the blue component is dehsed the period-1 sinkat the center of plotd)

where both blue and red components are dense

We observed the creation of variomstupled orbits in a  within these bifurcation substructures, giving birth of fine
self-similar bifurcation structure. We review Rg20] to ex-  and hyperfine structures. Since, in each of thegapling
plain the self-similarity of the bifurcation structure in a few processes, the original periodic orbit remained stable, the
lines. In between any two successive bifurcation curves oformation of an infinitely large sequence of coexisting sinks
this structure, one finds a series of bifurcation substructuregppears feasible. However, so far, we did not analyze the
born in various processes oftuplings. For instance, in be- evolutions of the invariant manifolds of the boundary
tween two successive period doubling bifurcation curvessaddles. Since the homoclinic tangency is a necessary crite-
(saym/2—m andm—2m), the substructure, born in period rion towards identification of these sinks as Newhouse sinks,
tripling, will have a boundary of periodf saddle node bi- we investigate the manifold evolutions in this paper and
furcation curve, and a sequence of period doublingn(3 present some evidence that would suggest the birth of New-
x2'7153mx2": 1=1,2,3...) bifurcation curves within house sinks in a self-similar bifurcation structure. We con-
the boundary. Similarly, the substructure, born in period quasider the Toda oscillator model of the class-B lage:
drupling, will have a boundary of periodsd saddle node

bifurcation curve, and a sequence of period doublingh(4 d5+a<i>+(1—mc05wr)(expc1)—1)
x 271 4mx2'; 1=1,2,3, ...) bifurcation curves within
the boundary. Such a process occurs in a self-similar manner \/Dﬁ+ »?Q? _, 0
= ﬁ cos wrt+tan D | (1)
u u

2By “n tupling” (n>2) we imply the birth of a perioa-tupled ~ Where® represents the laser intensiin logarithmic trans-

saddle node in the neighboring phase space of a given stable pefermed scalg We consider a low dissipative case of the
odic orbit. Toda oscillator D,=2,0=122.474,a=D,/Q1=0.016)
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FIG. 2. (Color) Past homoclinic tangency, the period-1 baSed) appears in fine scale within the period-3 ba@itue). ®=2.5 and
m=0.005. ® along horizontal axis and along vertical axis. The features have some similarity with Fig).1

and neglect the nonlinear damping term from the oscillatom=0.005# One can very well notice the stretching and fold-
equation of Ref[20]. Henceforth, by “perioda, (un)stable ing of the red tongues within the blue basin. As expected, the
manifold” we imply the (un)stable manifold of the period- red tongues are becoming thinner along the boundary be-
boundary saddle. We investigate the birth of secondarjween red and blue basifs.
Newhouse sinks in the neighboring parameter space of the Past homoclinic tangency, we have observed a series of
homoclinic tangency of the period-3 invariant manifolds in as€condary Newhouse sinks around the stable period-3 orbit
period-3 subharmonic resonance region. (Fig. 3). These sinks undergo sequence of period doubling
First, the driving frequency is kept constaniat 2.5 and whose parameter space representatives are some bifurcation
the driving parametem is increased as a control parameter_substructures within the _perlod'—3 bifurcation structure. In
At a certain value ofm (m=0.00474), we observe the first plot 3(a), we show a few bifurcation curves of some of these
homoclinic tangency. In Fig. 1 we show the scenario justEUbStrUCtureS' The cuneedenotes the period-3 saddlenode

. - ifurcation and the curvbk denotes the bifurcation curve for
after the first homoclinic tangency where the closure of theqomoclinic tangenc§l. Prior to period doubling(period 3
red component of the period-3 unstable manifold is a subse 9 ) P ap

f the cl f the bl &&imilarly. the ol —=6) [shown by curve(c)], we have observed a series rof
of the closure of the biue componenihimiiarly, the closure tuplings around period-3 node, after homoclinic tangency.
of magenta component of the period-3 stable manifold is

For instance, the curves e, andf denote respectively the
subset of the closure of the maroon component. Past h@sering.g, -12, and -15 saddle node bifurcations. It seems that
moclinic tangency, an infinitely large number of tongues ofby increasing the driving parameter at constant driving
the stable manifoldboth the componententer into the ba-  frequency, an infinite sequence of suetupled saddle nodes
sin, previously occupied by period-3. The space within thesgyj|| appear around the stable period-3 after the tangency.
tongues(i.e., within the components of the stable manifold The quotient of the periodicity of such saddle nodes and of
belongs to the period-1 basin. These tongues become thinner,
longer, and folded, as it accumulates, along the stable mani=——
fold. Such a scenario may be seen in Fig. 2 which illustrates “Fig. 2, and later Figs. 9 and 11 are prepared by integrating
the basins of period-3blue) and of period-1(red at (600x600) trajectories of Eq.1) within the phase space, shown in
these figures.
SUnder such circumstances, following Grebegial.[29], we may
state that the basin boundary would become complex similar to a
3The red component is not as clearly visible in Figa)las the  fractal.
blue component, after crossing the maroon stable manifold, remains®l.e., if the driving parametem is increased to intersect curve b
in the close vicinity of the red unstable component. The red comfrom below, the period-3 invariant manifolds undergo first tan-
ponent is more clearly shown ifl). gency.
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tripling, quadrupling, and pentupling, around the period-9 siak.

FIG. 3. Homoclinic tangency and the first-order secondaryThe associated second-order bifurcation substructures within the
Newhouse sinks, born in period tripling, quadrupling, and pentu-period-9 substructure. The bifurcation cungs, d, ande denote,
pling processes, around the period-3 si#.The associated bifur- respectively, the period-9, -27, -36, and -45 saddle node bifurca-
cation substructures within the period-3 bifurcation structure. Theions. The bifurcation curve b denotes the period doubling (9
bifurcation curves, d, e, andf denote respectively the period-3, -9, —18). In plots(b)—(d), respectively, the period-27, -36, and -45
-12, and -15 saddle node bifurcations. The bifurcation cubvasd branchedplus sign$ have been shown to coexist around period-9
¢ denote, respectively, the homoclinic tangency and the period dowsrbit (rectangley w=2.5.
bling (3—6). In plots(b)—(d), respectively, the period-9, -12, and ) )
-15 branchegplus sign$ have been shown to coexist around the N@mely, the period-27, -36, and -45 branches, respectively.

period-3 orbit(rectangle w=2.5. Each secondary cascade coexists with the period-9 node of
the period-9 branch. These branches appear in separate win-
period-3 constitute an infinite sequence of integérz.,  dows in the parameter space. Each window is a subinterval

...,6,5,4,3). These saddle and nodes may be identified ag the window where period-9 remains stable. Notice that the
the first-order secondary Newhouse orbits around the priperiod-9 orbit itself coexists around the period-3 which, in
mary Newhouse sink of period 3. As the driving parameter igurn, is located around period-1. Therefore, the periodic or-
swept, each sink constitutes a period doubling cas¢sele  bits from each secondary branch coexist with period-9, -3,
ondary cascadeln Figs. 3b), 3(c), and 3d), respectively, and -1 orbits. In other words, if the control parameter value
the period-9, -12, and -15 branches have been shown to ctelongs to any one of these windows, one may find a se-
exist around period-3 orbit. In Figs. 3 and the following fig- quence of three Newhouse sinks coexisting with period 1. In
ures, @, represents the asymptoti®, stroboscopically Fig.5, we show a similar scenario around the period-12 orbit
mapped with a sampling intervalnZr/w; T, denotes a of the period-12 branch. In Fig.(&, the curvesa and b
periodn branch. As one may notice from Figs. 3, these secdenote, respectively, the period-12 saddle node bifurcation
ondary cascades appear in sequence and exist in separated period doubling (1224). The curveg, d, ande de-
intervals in the control parameter space. note, respectively, the period-36, -48, and -60 saddle node
Such a series oh tuplings appears to recur in a self- bifurcations. In Figs. &)—5(d), we show the associated
similar manner, giving birth of higher order secondary New-higher order secondary cascades, viz., the period-36, -48, and
house sinks. Each sink similarly constitutes its own second-60 branches. Each branch coexists in the phase space with
ary cascade whose parameter-space representative is a highies period-12, -3, and -1 sinks. In Fig. 6, we show another
order bifurcation substructure. For instance, in Fig. 4 wesimilar scenario around the period-15 node. In Fi@) 6the
show a similar substructure formation around the period-Turvesa and b denote, respectively, the period-15 saddle
node. In Fig. 4a), the curvesa and b denote the period-9 node bifurcation and period doubling (£830). The curves
saddle node bifurcation and the period doubling«{98). ¢ and d denote the period-45, and period-60 saddle node
The curvesc, d, and e denote, respectively, the period-27, bifurcations. In Figs. @)—6(c), we show the period-45 and
-36, and -45 saddle node bifurcations. In Figd)44(d), we  -60 branches, each of them coexisting with the period-15, -3,
show the associated higher-order secondary cascade4, sinks. Such a scenario appears to be recurrent, as we show
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FIG. 5. Second-order secondary Newhouse sinks, born in perioc. m m

tripling, quadrupling, pentupling around the period-12 si@k.The . . .
associated second-order bifurcation substructures within the FIG. 6. Second-order secondary Newhouse sinks, born in period

period-12 bifurcation substructure. The bifurcation curaeg de- ripling, quadru_pllng, _around period-15 _su_wm) The _assouat_ed
note, respectively, the period-12, -36, -48, and -60 saddle nodgecond-order bifurcation substructures within the period-15 bifurca-
bifurcations. As we have to show all the curves simultaneously, th(-%!on substruct.ure. The bifurcation curvasc, andd.denot.e respec- .
curvesd and e could not be shown with better resolution. The ively .the period-15, -45, and '60. saddleno_de bifurcations. The bi-
bifurcation curveb denotes the period doubling (£224). In plots furcation curveb der_lotes the pen_od doubling (1830). In plots
(b)—(d), respectively, the period-36, -48, and -60 branchslas (b) and (c), respectively, the period-45, and -60 branclipkis

. . . . signg have been shown to coexist around period-15 oftatt-
h h t -12 oftstt- X ) ) )
eri;zs_ sze Zbgen shown to coexist around period € angles; o=2.5. (d) period-81 branchplus sign$, born in period

tripling around period-27(rectangles of period-27 branch;w
=25,

in the next plot[Fig. 6d)] where the period-81 secondary
cascade coexists with the period-27 sink of the period-2&ituation is illustrated schematically in Fig.(I). The
branch. Thus, if the control parameter value belongs to theecondary cascades, born around the orbit of period
window of period-81 branch, one may find a set of four3x2P1~1 (p=1,2,3...), in period tripling, quadrupling
Newhouse sinks, coexisting with period-1. Proceeding furand pentupling, are respectively denoted by, Qp, Pp.
ther in a similar manner, one may argue that in some subEach cascade is shown by one of its components. The bound-
intervals within the window of period-81, more number of ary saddles are shown by the segmented lines. For some
higher order secondary Newhouse sinks may be observedumerical evidences, we may refer back to Figs. 3. Each
The limit of such a sequence could be infinitely large. secondary Newhouse sink plays the same role as the primary

These observations suggest the birth of Newhouse sinkdewhouse sink period 3. In Fig(In), the bifurcation curves
in a self-similar bifurcation structure formation. In the next a and b denote, respectively, the periodh=3,4,5...)
schematic(Fig. 7), we illustrate these features. Figurd)7 saddlenode bifurcation, and the period doubling{36n).
shows three first order bifurcation substructures within theThe hatched bands d, ande denote the second order sub-
period-3 bifurcation structure im{— w) space. The lines, structures, born in the process of period tripling, quadru-
b, andc denote, respectively, the period-3 saddle node bifurpling, and pentupling respectively. If such a composite first-
cation, the homoclinic tangency, and the period doublingorder substructurésay a period-8 bifurcation substructuje
(3—6). The hatched bands; e, andf denote the first order is probed withm as the control parameter, each stable orbit
substructures, born in the process of period tripling, quadruef the period-& branch @’) would be found to be associ-
pling, and pentupling respectively. If such a “composite ated with an infinite series of higher order secondary cas-
structure” (i.e., the superposition of the period-3 bifurcation cades. Such a situation is illustrated schematically in Fig.
structure and the set of first-order substructuissprobed 7(IV). The secondary cascades, born around the orbit of pe-
with m as the control parameter, each stable orbit of theiod 3nx2P~1, in period tripling, quadrupling and pentu-
period-3 branchP) would be typically found to be associ- pling, are respectively denoted By p, Q'p, P’'p. Each
ated with an infinite series of secondary cascades. Such @scade is shown by one of its components. The boundary
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Our results also suggest that the windows of a given order
secondary Newhouse sinks obey certain inequalities. For in-
stance, the largest window belongs to the cascade born in
period tripling and the window becomes smaller as we move
on to period quadrupling, pentupling, and so on. In math-
ematical notation|Ws,| > |W,p|>|Ws,| - - -. As nincreases,
the windows become smaller but follow the same inequality.

Next we bring attention to the basins of the Newhouse
sinks. Eschenazet al. [30] have earlier observed that the
basins of the primary Newhouse sinks undergo reorganiza-
tion to indicate and finally accommodate the new basin. We
study here the basin formation of the secondary Newhouse
sinks and the associated invariant manifolds of the secondary
Newhouse saddles. In Fig. 8, we show a case after the birth
of period-9 saddlenode around the period-3 sink. Our obser-
vations suggest that the closure of period-9 unstable mani-
fold (dark and light green poinkss a subset of the closure of
the period-3 unstable manifo[diark blue points in plota)].

The period-9 stable manifolgblack and orange points in
w m Fig. 8b)] moves around within the period-3 basin, defined

FIG. 7. The schematic illustration of homoclinic tangency PY the period-3 stable manifoltted and yellow points in
within the self-similar bifurcation structurél) The linesa—c rep-  FI9. 8@]. The stable manifold of period-9 saddle indicates
resent the bifurcation curves for, respectively, the period-3 saddighe basin of the period-9 sink, depleted from the basin of
node bifurcation, the homoclinic tangency of the period-3 invariantperiod-3 sink. In the remote region where the period -3 and
manifolds, and the period doubling {36). The hatched band -9 stable manifolds coexist densely, one would find the pres-
e, andf represent the substructures, born in period tripling, quadruence of the period-9, -3, and -1 basins in a fine scale. In Fig.
pling, and pentupling, respectivelfll) A series of secondary cas- 9 we show the associated computed basins of attraction of
cades in association with the period-3 brané}).(The secondaryl period-1, -3, and -9 nodes. The three fingers of period-9 ba-
ga:(sczzgij?s, _fcz’rg . arou.nz . .t?e stagle ; orbit g of t IO‘ﬁ”c’dsin (dark blug appear within the period-3 basitight blue).

(p=1,2,3) in period tripling, quadrupling, and pentupling Away from the central region, the union of period-9 and -3

are respectively denoted By, Q,, P,. (Ill) The lines(a) and(b) . :
represent the bifurcation curves for the periadsiaddlenode bifur- basins twist and stretch around. Thus, a secondary Newhouse

cation, and the period doubling §3-6n), respectively. The Orbit, and its basin appear within the basin of the original
hatched bands—e represent the substructures, born in period tri- Primary Newhouse sink itself, in some sense implying a
pling, quadrupling, and pentupling, respectiveli’) A series of ~ “genealogical link” between the original primary Newhouse
secondary cascades in association with the perioti@dnch ¢’).  sink and the secondary Newhouse orbits.

The secondary cascades born around the stable orbit of period Such a subdivision of the basin appears to repeat at every
3nx2P~1 (p=1,2,3) in period tripling, quadrupling, and pentu- stage of periodh tupling. For instance, Figs. 10 illustrate the
pling are respectively denoted BY,, Q;, P, . invariant manifolds of period-3, -9, and -27 saddles shortly

dal h by th dli F after the birth of period-27 saddle node around period-9
saddles are shown by the segmented lines. For some numef jeo. By comparing the plot&) and (b), one may notice

cal evidences, we may refer o Figs. 4-6. These PrOCESSERat the period-9 unstable manifold remains in the close vi-

are expected to continue in a self-similar manner, glVmgcinity of green period-3 unstable manifold, and even follows

birth to a hierarchy of coexisting secondary Newhouse sinks, . .
One common feature, appearing from these observations, r%to the period-1 nodenear the right bottom corner of plots

that each higher order secondary cascade exists in a paral ) and (b)]. Thus their closures have become_ identical. In
eter window which is a subinterval of the window of the € Plot(c), we show a closeup around the period-9 node at

original cascade. La, denote the window of the a period- the_center of the black pc_)ints. ]t is apparent that closure of
n sink Also, letWs,,, W,,,, andWs, denote respectively the per!od—27 unstable mgnlfold is a _subset of closure_ of
windows where the secondary cascatlgs Q,,, andP, ex-  Period-9 unstable manifold. The period-27 stable manifold
ist. We find thatW,,Cw,; p=3,4,5 . ... Thus, in the win-  MOVeS within the period-9 basin, determined by the period-9
dow where the period-3 orbit of period-3 branch exists, theréstable manifold. Thus the period-27 basin is created by de-
could be an infinite series of subwindows for the first-orderpleting a portion of the period-9 basin. The overall phase
secondary cascades. Again, within the window of each perispace may be broadly categorized into two regidisthe

odic orbit from each of these first-order secondary cascadespre regions around period-1, -3, -9, and -27 sink$,the
there may be a new series of smaller subintervals where themote regions where the stable manifolds coexist densely.
second order cascades will appear. These processes are lik&lgr instance, the dense coexistence of the period-3, -9, and
to go on in a self-similar manner. Therefore, one may expect27 stable manifolds indicate the presence of fine layers of
that an infinitely large sequence of coexisting Newhouséhe period-1, -3, -9, and -27 basins. In Fig. 11, we show the
sinks will exist apparently for an infinitely large number of associated computed basins of attraction of period-1, -3, -9,
parameter values within the window where the period-3and -27 nodes. By comparing with Fig. (&) one can find a
branch exists. good agreement. Eschenatial. [30] have earlier observed
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FIG. 8. (Color) The formation of period-9 ba-
sin within the period-3 basinw=2.5 and m
=0.00676.(a) Red and yellow points show two
components of period-3 stable manifold. Dark
and light blue points show two components the
period-3 unstable manifold. The dark and light
green points at the central region show two com-
byt é_l ponents of the period-9 unstable manifolgh)

»
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P o7 1 The black and ints show t
it ;, . : ch e black and orange points show two compo-
"”% wjm*‘ ;g;ﬁ ;F*"; % nents of the period-9 stable manifold. Dark and
5 :E] light green points show two components of
- period-9 unstable manifold.
b
1.0

that as a periodic sink undergoes sequence of period doU+he higher-order secondary sinks will have a smaller basin.
bling, the basin itself gets split into as many parts as thélhus, as the system enters into the hyperfine bifurcation
stage of period doubling. We illustrated here that the basin o$tructures, more number of secondary sinks would appear.
a primary Newhouse sink may undergo similar depletion  However, the basins of these secondary sinks will be smaller
splitting) due to the creation of secondary Newhouse sinksand remain intertwined with the basins of the lower-order

FIG. 9. (Color) The period-9 basiidark blue
appears within the period-3 bagiblue). The red
basin belongs to period 1w=2.5 and m

=0.00676.® along the vertical axis and along
the horizontal axis. The period-9 basin is created
by depletion of a part of the period-3 basin. The
stable manifolds, which demarcate the basin
boundaries, may be seen in Fig. 8.

1.4

1.10

3500 @ -z000 ~0.500



PRE 62 NEWHOUSE SINKS IN THE SELF-SIMILAR . .. 2075

FIG. 10. (Color) The formation of period-27
basin after period tripling around period-@
=2.5 andm=0.0074.(a) The green points show
one component of the period-3 unstable mani-
fold. The orange and Indigo points denote two
components of the period-3 stable manifo(d)
The dark and light green points show two com-
ponents of the period-9 unstable manifold. The
dark and light blue points show two components
of the period-9 stable manifoldc) The red and
magenta points show two components of the
period-27 stable manifold. The black and maroon
points show two components of the period-27 un-
stable manifold. Rest are in the same convention
as in(b).

secondary sinks. the closure of the periodgh unstable manifold remains a
In these analyses, we focused only on sequence of periaslibset of the closure of periogpdinstable manifold. In each

tripling as a typical example. Notice that all tinetuplings  case of periodn tupling, say around periodgB (p

behave in a very similar manner, as evident from the figures=3 4 5 .. ), theclosure of the unstable manifold of period-

(Figs. 3—6, and from our earlier papge0]. We believe that 3 saddle is identical to the closure of the period-3 unstable
similar inference may also be obtained from any case ofygnifold.

periodn tupling and its heterogeneous combinations, i.e., in (iii) In each case of period tupling, say around period-

stead of a sequence Of. period tripling, one may cqnsider %p (p>1), there will be heteroclinic crossing between the
sequence of severaltuplings. Therefore, we may conjecture stable manifolds of periodsn saddle and the unstable

the followmg points with regard to the basins of SE"Comjarymanifold of period-® saddle. Since, the closure of the un-
Newhouse sinks.

(i) The unstable manifold of a secondary NewhouseStable manifold of period{3 is identical to the closure of

saddle connects the primary Newhouse sink on one side arRjeriod—S saddle, there w_iII be similar_ heteroclinic crossings
the secondary Newhouse sink on the other side. The stabREtWeen the stable manifolds of periogi8saddle and the
manifold of a secondary Newhouse saddle moves within th&nstable manifold of the period-3 saddle as well.
basin of corresponding primary Newhouse sink, determined TO conclude, the following features of the periodically
by the stable manifold of the primary Newhouse saddledriven Toda oscillator have been observed numerically. Se-
Thus the basin of a secondary Newhouse sink is formed bgluence of subharmonic resonances lead to the birth of se-
depleting the basin of the respective primary Newhouse sinkguence of primary Newhouse orbitsinks and saddlesAs a
The basin of the secondary sink always remains intertwinedontrol parameter is swept in the neigboring parameter space
with the basin of the primary sink. The features will be simi- of the homoclinic tangency of the invariant manifolds of a
lar in the case of creation of higher order secondary Newprimary saddle, first-order secondary Newhouse sinks are
house sinks. born around the corresponding primary Newhouse sink in a
(i) In each case of periadtupling, say around periodg8  series of periodh-tupling processes. A series of higher order
(p=1), the period-pn saddle node appears in the closuresecondary Newhouse sinks are born in simildupling pro-
of the period-p unstable manifold. Past such bifurcation, cesses, in a recurrent manner, around those first-order sec-
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FIG. 11. (Color) Coexistence of the basins of
Newhouse sinks after period tripling around pe-
riod 9. w=2.5 andm=0.0074.% along vertical
axis andd along horizontal axis. Red, light blue,
dark blue, and green basins belong to, respec-
tively, period-1, -3, -9, and -27 sinks. Some idea
about the stable manifolds, which demarcate the
basin boundaries, may be obtained from Fig. 10.
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ondary sinks, constituting a self-similar bifurcation structurethe case of creation of higher-order secondary Newhouse
in the parameter space. The secondary cascade from easimks. Therefore, the higher-order secondary sinks appear
higher order secondary Newhouse sink exists within a smalkith progressively smaller basins intertwined with the basins
subinterval of the control parameter window where theof lower-order secondary sinks.

lower-order secondary Newhouse sinks exists. The unstable

manifold of a secondary Newhouse saddle connects the pri- The author is sincerely grateful to Dr. N. Venkatramani
mary Newhouse sink on one side and the secondary Newand Dr. K. Dasgupta for useful comments. He thanks Dr. A.
house sink on the other side. The stable manifold of a sed\. Pisarchik, Stepanov Institute of Physics, Minsk, Belarus
ondary Newhouse saddle moves within the basin of thdor bringing to notice some important references. He also
respective primary Newhouse sink. Thus the basin of thdinds pleasure to acknowledge the help from Phool Chand
secondary Newhouse sink is formed by depleting the basiand Rajesh in color graphics and computations in
of the primary Newhouse sink. The features are recurrent iIANUPAM parallel processing network in Computer Center.
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