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Newhouse sinks in the self-similar bifurcation structure

Binoy Krishna Goswami*
Laser and Plasma Technology Division, Bhabha Atomic Research Centre, Mumbai 400 085, India

~Received 14 January 2000!

The numerical analyses of the dynamics of periodically driven Toda oscillator suggest the following fea-
tures. Primary Newhouse orbits~sinks and saddles! are born in sequence when the oscillator proceeds through
various subharmonic resonance regions. As the control parameter is swept in the neighboring parameter space
of the homoclinic tangency for a primary saddle, first order secondary Newhouse sinks are born around the
corresponding primary sink in a series of periodn-tupling (n.2) processes. Higher order secondary New-
house sinks are similarly born, in a recurrent manner, around those first-order secondary sinks, constituting a
self-similar bifurcation structure in the parameter space. Each higher~saynth! order secondary Newhouse sink
appears and undergoes sequence of period doubling~before being destroyed by crises!, within a small sub-
interval of the control parameter window where the (n21)th-order secondary Newhouse sink exists. The
nth-order secondary Newhouse orbits appear in the basin of the (n21)th-order secondary Newhouse sink.
Thus, the higher-order secondary sinks appear with progressively smaller basins intertwined with the basins of
lower-order secondary sinks.

PACS number~s!: 05.45.Pq, 05.45.Ac, 42.65.Sf, 47.52.1j
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A periodically driven nonlinear oscillator exhibits variou
subharmonic~harmonic! resonances if the driving frequenc
is multiples of~equal to! the natural frequency of the osci
lator. Each period-n resonance (n>1) gives birth of a
period-n saddle node bifurcation. If one changes the value
some suitable system parameter~‘‘control parameter’’!, a
cascade of such resonances may occur, leading to an
nitely large sequence of saddle node bifurcations.1 The asso-
ciated nodes later undergo sequence of period doubling,
stituting various branches. Some of these branches may
coexist in some intervals on the control parameter axis, le
ing to multistability. Multistability has been observed in
variety of nonlinear systems, for instance, in electronic c
cuits @3,4#, lasers@5–9#, geophysical models@10#, mechani-
cal systems@11#, and also in some standard models such
Hénon map@12# and Duffing oscillator@13–15#. The number
of coexisting states increases if the dissipativity reduc
This has been experimentally observed by Meucciet al. @16#
in CO2 laser, and numerically shown in Refs.@17–20# from
the laser rate equations@5,7,8,21–23#, a well known class-B
laser model. Feudelet al. @24# have theoretically shown th
coexistence of around a hundred periodic sinks at small
sipativity in the case of a two-dimensional map represen
a periodically kicked mechanical rotor. A natural questi
that arises is about the limit of the complex nature of mu
stability, and about some possible order behind such c
plexity. Newhouse@25# has predicted about an infinitel
large sequence of coexisting sinks in the neigboring par
eter space of homoclinic tangency. These celebrated pre

*Email address: bgoswami@apsara.barc.ernet.in
1Gavrilov and Shilnikov@1,2# have predicted the birth of an infi

nitely large sequence of saddle node bifurcations, in the cas
diffeomorphisms, close to homoclinic tangency of the invaria
manifolds of a ‘‘boundary saddle’’~i.e., a saddle, born in saddl
node bifurcation!.
PRE 621063-651X/2000/62~2!/2068~10!/$15.00
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tions of Newhouse have motivated many groups of resea
ers @26–30# for thorough investigations, and probably ha
remained an open subject until today. Laura Tedeschini-L
and Yorke@26# have shown that, for an apparently typic
situation, Newhouse sinks may occur for a set of param
values of Lebesgue measure zero. Laiet al. @27# have ob-
served that nonhyperbolic chaotic saddles are common
chaotic systems. In the case of He´non map, Kanet al. @28#
have shown evidence of persistent homoclinic tangenc
and Grebogiet al. @29# have shown that the boundary of
basin~born in saddle node bifurcation! could become fracta
after first homoclinic tangency of the corresponding boun
ary saddle. From the analyses of laser rate equations
Hénon map, Eschenaziet al. @30# have shown that the basin
are systematically organized in phase space, determine
the ordering of the heteroclinic and homoclinic intersectio
of the invariant manifolds of the boundary saddles. Th
have also stated about the birth of secondary Newhouse s
around the primary Newhouse sinks. However, they have
explored the possible recurrent appearance of similar hig
order secondary sinks around these secondary Newh
sinks. We believe it would be worthwhile to study the
directions. If one takes an integrated approach to analyze
birth of periodic orbits in a periodically forced system, su
a scenario appears feasible. For instance, let us consid
case when various primary Newhouse orbits are born aro
the stable period-1, as the system enters through the seri
various subharmonic resonances. Next, a series of secon
Newhouse sinks are born around these primary Newho
sinks, as Eschenaziet al. have observed. In such a case, o
may expect a similar trend to continue, giving birth to a s
of simultaneously coexisting higher-order secondary Ne
house sinks; the number of such sinks depending on the
rameter values. We have recently@17,19,20# demonstrated
some similar phenomena from the numerical analyses of
Toda oscillator form@18,31,32# of the laser rate equations
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PRE 62 2069NEWHOUSE SINKS IN THE SELF-SIMILAR . . .
FIG. 1. ~Color! Homoclinic tangency of the period-3 manifolds.v52.5 andm50.00474. Two components of the unstable manifold
shown respectively by blue and red points. Two components of the stable manifold are shown respectively by maroon and mage
The plot ~b!, a closeup of plot~a!, shows more clearly the stretching and folding of the maroon stable component and its ev
accumulation near the magenta stable component. The blue unstable component also undergoes similar stretching and fol
approaching the period-3 sink@at the center of plot~c! where the blue component is dense# and the period-1 sink@at the center of plot~d!
where both blue and red components are dense#.
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We observed the creation of variousn-tupled2 orbits in a
self-similar bifurcation structure. We review Ref.@20# to ex-
plain the self-similarity of the bifurcation structure in a fe
lines. In between any two successive bifurcation curves
this structure, one finds a series of bifurcation substructu
born in various processes ofn tuplings. For instance, in be
tween two successive period doubling bifurcation curv
~saym/2→m andm→2m), the substructure, born in perio
tripling, will have a boundary of period-3m saddle node bi-
furcation curve, and a sequence of period doubling (m
32l 21→3m32l ; l 51,2,3, . . . ) bifurcation curves within
the boundary. Similarly, the substructure, born in period q
drupling, will have a boundary of period-4m saddle node
bifurcation curve, and a sequence of period doubling (m
32l 21→4m32l ; l 51,2,3, . . . ) bifurcation curves within
the boundary. Such a process occurs in a self-similar ma

2By ‘‘ n tupling’’ ( n.2) we imply the birth of a periodn-tupled
saddle node in the neighboring phase space of a given stable
odic orbit.
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within these bifurcation substructures, giving birth of fin
and hyperfine structures. Since, in each of thesen-tupling
processes, the original periodic orbit remained stable,
formation of an infinitely large sequence of coexisting sin
appears feasible. However, so far, we did not analyze
evolutions of the invariant manifolds of the bounda
saddles. Since the homoclinic tangency is a necessary c
rion towards identification of these sinks as Newhouse sin
we investigate the manifold evolutions in this paper a
present some evidence that would suggest the birth of N
house sinks in a self-similar bifurcation structure. We co
sider the Toda oscillator model of the class-B lasers@20#:

F̈1aḞ1~12m cosvt!~expF21!

5m
ADu

21v2V2

Du21
cosS vt1tan21

vV

Du
D , ~1!

whereF represents the laser intensity~in logarithmic trans-
formed scale!. We consider a low dissipative case of th
Toda oscillator (Du52, V5122.474,a[Du /V>0.016)
ri-
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FIG. 2. ~Color! Past homoclinic tangency, the period-1 basin~red! appears in fine scale within the period-3 basin~blue!. v52.5 and

m50.005.F along horizontal axis andḞ along vertical axis. The features have some similarity with Fig. 1~b!.
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and neglect the nonlinear damping term from the oscilla
equation of Ref.@20#. Henceforth, by ‘‘period-n, ~un!stable
manifold’’ we imply the~un!stable manifold of the period-n
boundary saddle. We investigate the birth of second
Newhouse sinks in the neighboring parameter space of
homoclinic tangency of the period-3 invariant manifolds in
period-3 subharmonic resonance region.

First, the driving frequency is kept constant atv52.5 and
the driving parameterm is increased as a control paramet
At a certain value ofm (m>0.00474), we observe the firs
homoclinic tangency. In Fig. 1 we show the scenario j
after the first homoclinic tangency where the closure of
red component of the period-3 unstable manifold is a sub
of the closure of the blue component.3 Similarly, the closure
of magenta component of the period-3 stable manifold i
subset of the closure of the maroon component. Past
moclinic tangency, an infinitely large number of tongues
the stable manifold~both the components! enter into the ba-
sin, previously occupied by period-3. The space within th
tongues~i.e., within the components of the stable manifold!,
belongs to the period-1 basin. These tongues become thin
longer, and folded, as it accumulates, along the stable m
fold. Such a scenario may be seen in Fig. 2 which illustra
the basins of period-3~blue! and of period-1 ~red! at

3The red component is not as clearly visible in Fig. 1~a! as the
blue component, after crossing the maroon stable manifold, rem
in the close vicinity of the red unstable component. The red co
ponent is more clearly shown in~d!.
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m50.005.4 One can very well notice the stretching and fol
ing of the red tongues within the blue basin. As expected,
red tongues are becoming thinner along the boundary
tween red and blue basins.5

Past homoclinic tangency, we have observed a serie
secondary Newhouse sinks around the stable period-3 o
~Fig. 3!. These sinks undergo sequence of period doub
whose parameter space representatives are some bifurc
substructures within the period-3 bifurcation structure.
plot 3~a!, we show a few bifurcation curves of some of the
substructures. The curvea denotes the period-3 saddlenod
bifurcation and the curveb denotes the bifurcation curve fo
homoclinic tangency.6 Prior to period doubling~period 3
→6) @shown by curve~c!#, we have observed a series ofn
tuplings around period-3 node, after homoclinic tangen
For instance, the curvesd, e, and f denote respectively the
period-9, -12, and -15 saddle node bifurcations. It seems
by increasing the driving parameterm at constant driving
frequency, an infinite sequence of suchn-tupled saddle nodes
will appear around the stable period-3 after the tangen
The quotient of the periodicity of such saddle nodes and

ns
-

4Fig. 2, and later Figs. 9 and 11 are prepared by integra
(6003600) trajectories of Eq.~1! within the phase space, shown i
these figures.

5Under such circumstances, following Grebogiet al. @29#, we may
state that the basin boundary would become complex similar
fractal.

6I.e., if the driving parameterm is increased to intersect curve
from below, the period-3 invariant manifolds undergo first ta
gency.
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period-3 constitute an infinite sequence of integers~viz.,
. . . ,6,5,4,3). These saddle and nodes may be identifie
the first-order secondary Newhouse orbits around the
mary Newhouse sink of period 3. As the driving paramete
swept, each sink constitutes a period doubling cascade~sec-
ondary cascade!. In Figs. 3~b!, 3~c!, and 3~d!, respectively,
the period-9, -12, and -15 branches have been shown to
exist around period-3 orbit. In Figs. 3 and the following fi
ures, Fn represents the asymptoticF, stroboscopically
mapped with a sampling interval 2np/v; Tn denotes a
period-n branch. As one may notice from Figs. 3, these s
ondary cascades appear in sequence and exist in sep
intervals in the control parameter space.

Such a series ofn tuplings appears to recur in a sel
similar manner, giving birth of higher order secondary Ne
house sinks. Each sink similarly constitutes its own seco
ary cascade whose parameter-space representative is a h
order bifurcation substructure. For instance, in Fig. 4
show a similar substructure formation around the perio
node. In Fig. 4~a!, the curvesa and b denote the period-9
saddle node bifurcation and the period doubling (9→18).
The curvesc, d, and e denote, respectively, the period-2
-36, and -45 saddle node bifurcations. In Figs. 4~b!–4~d!, we
show the associated higher-order secondary casca

FIG. 3. Homoclinic tangency and the first-order second
Newhouse sinks, born in period tripling, quadrupling, and pen
pling processes, around the period-3 sink.~a! The associated bifur-
cation substructures within the period-3 bifurcation structure. T
bifurcation curvesa, d, e, andf denote respectively the period-3, -
-12, and -15 saddle node bifurcations. The bifurcation curvesb and
c denote, respectively, the homoclinic tangency and the period d
bling (3→6). In plots~b!–~d!, respectively, the period-9, -12, an
-15 branches~plus signs! have been shown to coexist around t
period-3 orbit~rectangles!; v52.5.
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namely, the period-27, -36, and -45 branches, respectiv
Each secondary cascade coexists with the period-9 nod
the period-9 branch. These branches appear in separate
dows in the parameter space. Each window is a subinte
of the window where period-9 remains stable. Notice that
period-9 orbit itself coexists around the period-3 which,
turn, is located around period-1. Therefore, the periodic
bits from each secondary branch coexist with period-9,
and -1 orbits. In other words, if the control parameter va
belongs to any one of these windows, one may find a
quence of three Newhouse sinks coexisting with period 1
Fig. 5, we show a similar scenario around the period-12 o
of the period-12 branch. In Fig. 5~a!, the curvesa and b
denote, respectively, the period-12 saddle node bifurca
and period doubling (12→24). The curvesc, d, and e de-
note, respectively, the period-36, -48, and -60 saddle n
bifurcations. In Figs. 5~b!–5~d!, we show the associate
higher order secondary cascades, viz., the period-36, -48,
-60 branches. Each branch coexists in the phase space
the period-12, -3, and -1 sinks. In Fig. 6, we show anot
similar scenario around the period-15 node. In Fig. 6~a!, the
curves a and b denote, respectively, the period-15 sadd
node bifurcation and period doubling (15→30). The curves
c and d denote the period-45, and period-60 saddle no
bifurcations. In Figs. 6~b!–6~c!, we show the period-45 and
-60 branches, each of them coexisting with the period-15,
-1 sinks. Such a scenario appears to be recurrent, as we

y
-

e

u-

FIG. 4. Second-order secondary Newhouse sinks, born in pe
tripling, quadrupling, and pentupling, around the period-9 sink.~a!
The associated second-order bifurcation substructures within
period-9 substructure. The bifurcation curvesa, c, d, ande denote,
respectively, the period-9, -27, -36, and -45 saddle node bifu
tions. The bifurcation curve b denotes the period doubling
→18). In plots ~b!–~d!, respectively, the period-27, -36, and -4
branches~plus signs! have been shown to coexist around period
orbit ~rectangles!; v52.5.
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in the next plot@Fig. 6~d!# where the period-81 seconda
cascade coexists with the period-27 sink of the period
branch. Thus, if the control parameter value belongs to
window of period-81 branch, one may find a set of fo
Newhouse sinks, coexisting with period-1. Proceeding f
ther in a similar manner, one may argue that in some s
intervals within the window of period-81, more number
higher order secondary Newhouse sinks may be obser
The limit of such a sequence could be infinitely large.

These observations suggest the birth of Newhouse s
in a self-similar bifurcation structure formation. In the ne
schematic~Fig. 7!, we illustrate these features. Figure 7~I!
shows three first order bifurcation substructures within
period-3 bifurcation structure in (m2v) space. The linesa,
b, andc denote, respectively, the period-3 saddle node bi
cation, the homoclinic tangency, and the period doubl
(3→6). The hatched bandsd, e, andf denote the first orde
substructures, born in the process of period tripling, quad
pling, and pentupling respectively. If such a ‘‘compos
structure’’ ~i.e., the superposition of the period-3 bifurcatio
structure and the set of first-order substructures! is probed
with m as the control parameter, each stable orbit of
period-3 branch~P! would be typically found to be assoc
ated with an infinite series of secondary cascades. Su

FIG. 5. Second-order secondary Newhouse sinks, born in pe
tripling, quadrupling, pentupling around the period-12 sink.~a! The
associated second-order bifurcation substructures within
period-12 bifurcation substructure. The bifurcation curvesa–e de-
note, respectively, the period-12, -36, -48, and -60 saddle n
bifurcations. As we have to show all the curves simultaneously,
curves d and e could not be shown with better resolution. Th
bifurcation curveb denotes the period doubling (12→24). In plots
~b!–~d!, respectively, the period-36, -48, and -60 branches~plus
signs! have been shown to coexist around period-12 orbit~rect-
angles!; v52.5.
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situation is illustrated schematically in Fig. 7~II !. The
secondary cascades, born around the orbit of pe
332p121 (p51,2,3, . . . ), in period tripling, quadrupling
and pentupling, are respectively denoted byTp, Qp, Pp.
Each cascade is shown by one of its components. The bo
ary saddles are shown by the segmented lines. For s
numerical evidences, we may refer back to Figs. 3. E
secondary Newhouse sink plays the same role as the prim
Newhouse sink period 3. In Fig. 7~III !, the bifurcation curves
a and b denote, respectively, the period-3n(n53,4,5, . . . )
saddlenode bifurcation, and the period doubling (3n→6n).
The hatched bandsc, d, ande denote the second order su
structures, born in the process of period tripling, quad
pling, and pentupling respectively. If such a composite fir
order substructure~say a period-3n bifurcation substructure!
is probed withm as the control parameter, each stable or
of the period-3n branch (P8) would be found to be associ
ated with an infinite series of higher order secondary c
cades. Such a situation is illustrated schematically in F
7~IV !. The secondary cascades, born around the orbit of
riod 3n32p21, in period tripling, quadrupling and pentu
pling, are respectively denoted byT8p , Q8p , P8p. Each
cascade is shown by one of its components. The bound

d

e

e
e

FIG. 6. Second-order secondary Newhouse sinks, born in pe
tripling, quadrupling, around period-15 sink.~a! The associated
second-order bifurcation substructures within the period-15 bifur
tion substructure. The bifurcation curvesa, c, andd denote respec-
tively the period-15, -45, and -60 saddlenode bifurcations. The
furcation curveb denotes the period doubling (15→30). In plots
~b! and ~c!, respectively, the period-45, and -60 branches~plus
signs! have been shown to coexist around period-15 orbit~rect-
angles!; v52.5. ~d! period-81 branch~plus signs!, born in period
tripling around period-27~rectangles! of period-27 branch;v
52.5.
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saddles are shown by the segmented lines. For some num
cal evidences, we may refer to Figs. 4–6. These proce
are expected to continue in a self-similar manner, giv
birth to a hierarchy of coexisting secondary Newhouse sin
One common feature, appearing from these observation
that each higher order secondary cascade exists in a pa
eter window which is a subinterval of the window of th
original cascade. Letwn denote the window of the a period
n sink Also, letW3n , W4n , andW5n denote respectively the
windows where the secondary cascadesTn , Qn , andPn ex-
ist. We find thatWpn,wn ; p53,4,5, . . . . Thus, in the win-
dow where the period-3 orbit of period-3 branch exists, th
could be an infinite series of subwindows for the first-ord
secondary cascades. Again, within the window of each p
odic orbit from each of these first-order secondary casca
there may be a new series of smaller subintervals where
second order cascades will appear. These processes are
to go on in a self-similar manner. Therefore, one may exp
that an infinitely large sequence of coexisting Newhou
sinks will exist apparently for an infinitely large number
parameter values within the window where the period
branch exists.

FIG. 7. The schematic illustration of homoclinic tangen
within the self-similar bifurcation structure.~I! The linesa–c rep-
resent the bifurcation curves for, respectively, the period-3 sa
node bifurcation, the homoclinic tangency of the period-3 invari
manifolds, and the period doubling (3→6). The hatched bandsd,
e, andf represent the substructures, born in period tripling, quad
pling, and pentupling, respectively.~II ! A series of secondary cas
cades in association with the period-3 branch (P). The secondary
cascades, born around the stable orbit of per
332p21 (p51,2,3) in period tripling, quadrupling, and pentuplin
are respectively denoted byTp , Qp , Pp . ~III ! The lines~a! and~b!
represent the bifurcation curves for the period-3n saddlenode bifur-
cation, and the period doubling (3n→6n), respectively. The
hatched bandsc–e represent the substructures, born in period
pling, quadrupling, and pentupling, respectively.~IV ! A series of
secondary cascades in association with the period-3n branch (P8).
The secondary cascades born around the stable orbit of pe
3n32p21 (p51,2,3) in period tripling, quadrupling, and pentu
pling are respectively denoted byTp8 , Qp8 , Pp8 .
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es

g
s.
is
m-

e
r
i-
s,

he
ely

ct
e

3

Our results also suggest that the windows of a given or
secondary Newhouse sinks obey certain inequalities. Fo
stance, the largest window belongs to the cascade bor
period tripling and the window becomes smaller as we mo
on to period quadrupling, pentupling, and so on. In ma
ematical notation,uW3nu.uW4nu.uW5nu•••. As n increases,
the windows become smaller but follow the same inequal

Next we bring attention to the basins of the Newhou
sinks. Eschenaziet al. @30# have earlier observed that th
basins of the primary Newhouse sinks undergo reorgan
tion to indicate and finally accommodate the new basin.
study here the basin formation of the secondary Newho
sinks and the associated invariant manifolds of the secon
Newhouse saddles. In Fig. 8, we show a case after the b
of period-9 saddlenode around the period-3 sink. Our ob
vations suggest that the closure of period-9 unstable m
fold ~dark and light green points! is a subset of the closure o
the period-3 unstable manifold@dark blue points in plot~a!#.
The period-9 stable manifold@black and orange points in
Fig. 8~b!# moves around within the period-3 basin, defin
by the period-3 stable manifold@red and yellow points in
Fig. 8~a!#. The stable manifold of period-9 saddle indicat
the basin of the period-9 sink, depleted from the basin
period-3 sink. In the remote region where the period -3 a
-9 stable manifolds coexist densely, one would find the pr
ence of the period-9, -3, and -1 basins in a fine scale. In
9, we show the associated computed basins of attractio
period-1, -3, and -9 nodes. The three fingers of period-9
sin ~dark blue! appear within the period-3 basin~light blue!.
Away from the central region, the union of period-9 and
basins twist and stretch around. Thus, a secondary Newh
orbit, and its basin appear within the basin of the origin
primary Newhouse sink itself, in some sense implying
‘‘genealogical link’’ between the original primary Newhous
sink and the secondary Newhouse orbits.

Such a subdivision of the basin appears to repeat at e
stage of periodn tupling. For instance, Figs. 10 illustrate th
invariant manifolds of period-3, -9, and -27 saddles sho
after the birth of period-27 saddle node around perio
node. By comparing the plots~a! and ~b!, one may notice
that the period-9 unstable manifold remains in the close
cinity of green period-3 unstable manifold, and even follo
it to the period-1 node@near the right bottom corner of plot
~a! and ~b!#. Thus their closures have become identical.
the plot ~c!, we show a closeup around the period-9 node
the center of the black points. It is apparent that closure
period-27 unstable manifold is a subset of closure
period-9 unstable manifold. The period-27 stable manif
moves within the period-9 basin, determined by the perio
stable manifold. Thus the period-27 basin is created by
pleting a portion of the period-9 basin. The overall pha
space may be broadly categorized into two regions:~i! the
core regions around period-1, -3, -9, and -27 sinks,~ii ! the
remote regions where the stable manifolds coexist dens
For instance, the dense coexistence of the period-3, -9,
-27 stable manifolds indicate the presence of fine layers
the period-1, -3, -9, and -27 basins. In Fig. 11, we show
associated computed basins of attraction of period-1, -3,
and -27 nodes. By comparing with Fig. 10~c!, one can find a
good agreement. Eschenaziet al. @30# have earlier observed
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FIG. 8. ~Color! The formation of period-9 ba-
sin within the period-3 basin.v52.5 and m
50.00676.~a! Red and yellow points show two
components of period-3 stable manifold. Da
and light blue points show two components th
period-3 unstable manifold. The dark and lig
green points at the central region show two co
ponents of the period-9 unstable manifold.~b!
The black and orange points show two comp
nents of the period-9 stable manifold. Dark an
light green points show two components
period-9 unstable manifold.
do
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that as a periodic sink undergoes sequence of period
bling, the basin itself gets split into as many parts as
stage of period doubling. We illustrated here that the basi
a primary Newhouse sink may undergo similar depletion~or
splitting! due to the creation of secondary Newhouse sin
u-
e
of

s.

The higher-order secondary sinks will have a smaller ba
Thus, as the system enters into the hyperfine bifurca
structures, more number of secondary sinks would app
However, the basins of these secondary sinks will be sma
and remain intertwined with the basins of the lower-ord
ed
e
in
FIG. 9. ~Color! The period-9 basin~dark blue!
appears within the period-3 basin~blue!. The red
basin belongs to period 1.v52.5 and m

50.00676.Ḟ along the vertical axis andF along
the horizontal axis. The period-9 basin is creat
by depletion of a part of the period-3 basin. Th
stable manifolds, which demarcate the bas
boundaries, may be seen in Fig. 8.
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FIG. 10. ~Color! The formation of period-27
basin after period tripling around period-9.v
52.5 andm50.0074.~a! The green points show
one component of the period-3 unstable ma
fold. The orange and Indigo points denote tw
components of the period-3 stable manifold.~b!
The dark and light green points show two com
ponents of the period-9 unstable manifold. Th
dark and light blue points show two componen
of the period-9 stable manifold.~c! The red and
magenta points show two components of t
period-27 stable manifold. The black and maro
points show two components of the period-27 u
stable manifold. Rest are in the same convent
as in ~b!.
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secondary sinks.
In these analyses, we focused only on sequence of pe

tripling as a typical example. Notice that all then tuplings
behave in a very similar manner, as evident from the figu
~Figs. 3–6!, and from our earlier paper@20#. We believe that
similar inference may also be obtained from any case
periodn tupling and its heterogeneous combinations, i.e.
stead of a sequence of period tripling, one may conside
sequence of severaln tuplings. Therefore, we may conjectu
the following points with regard to the basins of second
Newhouse sinks.

~i! The unstable manifold of a secondary Newhou
saddle connects the primary Newhouse sink on one side
the secondary Newhouse sink on the other side. The st
manifold of a secondary Newhouse saddle moves within
basin of corresponding primary Newhouse sink, determi
by the stable manifold of the primary Newhouse sadd
Thus the basin of a secondary Newhouse sink is formed
depleting the basin of the respective primary Newhouse s
The basin of the secondary sink always remains intertwi
with the basin of the primary sink. The features will be sim
lar in the case of creation of higher order secondary Ne
house sinks.

~ii ! In each case of periodn tupling, say around period-3p
(p>1), the period-3pn saddle node appears in the closu
of the period-3p unstable manifold. Past such bifurcatio
od

s

f
n
a

y

e
nd
le
e
d
.
y

k.
d

-

the closure of the period-3pn unstable manifold remains
subset of the closure of period-3p unstable manifold. In each
case of period n tupling, say around period-3p (p
53,4,5, . . . ), theclosure of the unstable manifold of period
3p saddle is identical to the closure of the period-3 unsta
manifold.

~iii ! In each case of periodn tupling, say around period
3p (p.1), there will be heteroclinic crossing between t
stable manifolds of period-3pn saddle and the unstabl
manifold of period-3p saddle. Since, the closure of the u
stable manifold of period-3p is identical to the closure o
period-3 saddle, there will be similar heteroclinic crossin
between the stable manifolds of period-3pn saddle and the
unstable manifold of the period-3 saddle as well.

To conclude, the following features of the periodical
driven Toda oscillator have been observed numerically.
quence of subharmonic resonances lead to the birth of
quence of primary Newhouse orbits~sinks and saddles!. As a
control parameter is swept in the neigboring parameter sp
of the homoclinic tangency of the invariant manifolds of
primary saddle, first-order secondary Newhouse sinks
born around the corresponding primary Newhouse sink i
series of periodn-tupling processes. A series of higher ord
secondary Newhouse sinks are born in similarn-tupling pro-
cesses, in a recurrent manner, around those first-order
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FIG. 11. ~Color! Coexistence of the basins o
Newhouse sinks after period tripling around p

riod 9. v52.5 andm50.0074.Ḟ along vertical
axis andF along horizontal axis. Red, light blue
dark blue, and green basins belong to, resp
tively, period-1, -3, -9, and -27 sinks. Some ide
about the stable manifolds, which demarcate t
basin boundaries, may be obtained from Fig. 1
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and
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ondary sinks, constituting a self-similar bifurcation structu
in the parameter space. The secondary cascade from
higher order secondary Newhouse sink exists within a sm
subinterval of the control parameter window where t
lower-order secondary Newhouse sinks exists. The unst
manifold of a secondary Newhouse saddle connects the
mary Newhouse sink on one side and the secondary N
house sink on the other side. The stable manifold of a s
ondary Newhouse saddle moves within the basin of
respective primary Newhouse sink. Thus the basin of
secondary Newhouse sink is formed by depleting the ba
of the primary Newhouse sink. The features are recurren
ys

i,
,

et
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ll
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ri-
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the case of creation of higher-order secondary Newho
sinks. Therefore, the higher-order secondary sinks app
with progressively smaller basins intertwined with the bas
of lower-order secondary sinks.
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